Article Image
News Link • Space Travel and Exploration

Game Changing Direct Drive Fusion Propulsion Progress

•, brian wang

The truly game-changing levels of thrust and power in a modestly sized package could integrate with our current launch infrastructure while radically expanding the science capability of these missions. NIAC grants require that a technology be studied in the context of a specific mission. The mission context is the delivery of a Pluto orbiter with a lander, which cannot be done with any other technology. Direct Fusion Drive (DFD) provides moderate thrust to allow for reasonable transit times to Pluto while delivering substantial mass to orbit: 1000 kg delivered in four years using 5 N constant thrust.

Since DFD provides power as well as propulsion in one integrated device, it will also provide as much as 1 MW of useful electrical power to the payloads upon arrival. This enables high-bandwidth optical communication, powering of the lander from orbit, and radically expanded options for instrument design.

The Princeton Field-Reversed Configuration (PFRC), which is a steady-state fusion reactor concept with heating via rotating magnetic fields. A thrust model of the reactor is presented that is based on a fluid code modeling the exchange of energy in the plasma surrounding the reactor.

Join us on our Social Networks:


Share this page with your friends on your favorite social network: