Article Image
News Link • Science, Medicine and Technology

Implantable Silicon-Silk Electronics

• Technology Review

By building thin, flexible silicon electronics on silk substrates, researchers have made electronics that almost completely dissolve inside the body. So far the research group has demonstrated arrays of transistors made on thin films of silk. While electronics must usually be encased to protect them from the body, these electronics don't need protection, and the silk means the electronics conform to biological tissue. The silk melts away over time and the thin silicon circuits left behind don't cause irritation because they are just nanometers thick.

Silicon on silk: This clear silk film, about one centimeter squared, has six silicon transistors on its surface. These flexible devices can be implanted in mice like the one in this image without causing any harm, and the silk degrades over time. The orange liquid on the hair is a disinfectant used during the surgery.
Credit: Rogers/Omenetto

"Current medical devices are very limited by the fact that the active electronics have to be 'canned,' or isolated from the body, and are on rigid silicon," says Brian Litt, associate professor of neurology and bioengineering at the University of Pennsylvania. Litt, who is working with the silk-silicon group to develop medical applications for the new devices, says they could interact with tissues in new ways. The group is developing silk-silicon LEDs that might act as photonic tattoos that can show blood-sugar readings, as well as arrays of conformable electrodes that might interface with the nervous system.

Last year, John Rogers, professor of materials science and engineering at the Beckman Institute at the University of Illinois at Champaign-Urbana, developed flexible, stretchable silicon circuits whose performance matches that of their rigid counterparts. To make these devices biocompatible, Rogers's lab collaborated with Fiorenzo Omenetto and David Kaplan, professors of bioengineering at Tufts University in Medford, MA, who last year reported making nanopatterned optical devices from silkworm-cocoon proteins.

 

Join us on our Social Networks:

 

Share this page with your friends on your favorite social network:


Purse.IO Save on All Amazon Purchases