Article Image
News Link • Science, Medicine and Technology

World’s Most Powerful Laser on Target for Awesome Science

• Dave Mosher via
Scientists recently pulled together the pieces of the world’s most powerful laser and, in a first-ever complete dry run, pulled the trigger on a peppercorn-sized pellet of nuclear fuel. The energy crushed the capsule instantly, causing it to spew a shower of neutrons. In short: It worked.

The firing of the National Ignition Facility, or NIF, at Lawrence Livermore National Laboratory, located 40 or so miles east of San Francisco, wasn’t an earnest attempt at a more-energy-out-than-you-put-in “ignition” of fusion, the same process that merges atoms at the sun’s core — and the facility’s ultimate goal. Yet the staff and independent researchers working with the $3.5 billion machine have reason to be optimistic about achieving fusion within two years, even if much of the device’s time is earmarked for defense research and prospects of near-limitless and pollution-free energy aren’t certain.

“In my mind, to have accomplished this shot is an almost unfathomable scientific achievement,” Paul Drake, a physicist at the University of Michigan using NIF as a proving ground for studying supernova physics in the laboratory, told “I’ve had a lifetime of experience of big science facilities, and find myself in awe of [the NIF team] having made this thing work this fast.”

National Ignition Facility laser bayThe research facility’s construction began in 1997 and spreads over an area nearly the size of three pro league football fields, most of the space occupied by equipment that revs up 192 laser beams. During the Sept. 29, 2010 firing of the laser, scientists and engineers funneled these beams into a 30-foot-diameter metal sphere at the end of the complex. At the center of this chamber, a tiny plastic pellet filled with heavier forms of hydrogen received a punishing 1 megajoule zap, similar to the instantaneous oomph of a car traveling 100 mph.

 According to engineering physicist Edward Moses, who heads up the NIF team, the laser burst was about 75 percent of its full energy capacity. In addition, the cryogenically cooled pellet was filled with deliberately less-than-perfect fuel.

Join us on our Social Networks:


Share this page with your friends on your favorite social network:

Purse.IO Save on All Amazon Purchases