Article Image
News Link • Robots and Artificial Intelligence

Team reports brain-controlled ambulation in robotic leg test

•, by Nancy Owano
 An Do, MD, at the Long Beach Veterans Affairs Medical Center in California and colleagues at the University of California Irvine, have succeeded in connecting a mind-computer interface to a robotic leg. "This finding represents the first successful demonstration of a BCI-controlled lower extremity prosthesis for independent ambulation," say the researchers. They built and tested a prosthetic lower limb that can be controlled in real time by EEG (electroencephalogram) signals fed into a computer. Their work is presented in a paper, "Brain-Computer Interface Controlled Robotic Gait Orthosis: A Case Report," by An H. Do, Po T. Wang, Christine E. King, Sophia N. Chun, and Zoran Nenadic.
In previous work, they developed a way of using EEG signals to control the walking motion of an avatar in a virtual environment. Their tests involved recording EEG data from an able-bodied subject alternating between walking and standing. The data was used to generate an EEG prediction model for online BCI operation. A commercial robotic gait orthosis system was interfaced with the BCI computer to allow for computerized control. In an online test, the subject was tasked to ambulate using the system when prompted by computerized cues. The researchers assessed how the system performed with cross-correlation analysis, latency, and omission and false alarm rates.

Join us on our Social Networks:


Share this page with your friends on your favorite social network: