Article Image
News Link • Energy

World’s most efficient thermoelectric material developed

•, By Darren Quick
 Unfortunately, electricity generation systems operate at around 30 to 40 percent efficiency, meaning around two thirds of the energy input is lost as waste heat. Despite this, the inefficiency of current thermoelectric materials that can convert waste heat to electricity has meant their commercial use has been limited. Now researchers have developed a thermoelectric material they claim is the best in the world at converting waste heat into electricity, potentially providing a practical way to capture some of the energy that is currently lost.

The new material, which is based on the common semiconductor telluride, is environmentally stable and is expected to convert from 15 to 20 percent of waste heat to electricity. The research team, made up of chemists, material scientists and mechanical engineers from Northwestern University and Michigan State University, say the material exhibits a thermoelectric figure of merit (or “ZT”) of 2.2, which they claim is the highest reported to date.

The higher a material’s ZT, the more efficient it is at converting heat to electricity. While there’s no theoretical upper limit to ZT, no known materials exhibit a ZT higher than 3. The researchers believe with a ZT of 2.2, the new material is efficient enough to be used in practical applications and could usher in more widespread adoption of thermoelectrics by industry.

Join us on our Social Networks:


Share this page with your friends on your favorite social network: