Article Image
News Link • Science, Medicine and Technology

Recipe for room temperature superconductors from California Institute of Technology


Hence, there still remains substantial "latent" Tc in cuprates. Their proposed doping strategy and superconducting mechanism is not restricted to cuprates and may be exploited in other materials.

Their room-temperature Tc result is based upon four observations:
• Cuprates are intrinsically inhomogeneous on the atomic-scale and are comprised of insulating and metallic regions. The metallic region is formed by doping the material.
• A diverse set of normal state properties are explained solely from the topological properties of these two regions and their doping evolution.
• Superconductivity results from phonons at or adjacent to the interface between the metallic and insulating regions. Transition temperatures Tc ∼ 100 K are possible because the electron-phonon coupling is of longer-range than metals (nearest neighbor).
• These interface phonons explain the observed superconducting properties and lead to their prediction of room-temperature superconductivity.