Article Image
IPFS News Link • Science, Medicine and Technology

Magnetospheric Protection from Galactic Cosmic Radiation for long space missions

• by brian wang

A This configuration has the singular ability to deflect the vast majority of the GCR including HZE ions. In addition, the MDT shields both habitat and magnets eliminating the secondary particle irradiation hazard, which can dominate over the primary GCR for the closed magnetic topologies that have been investigated in the past. MDT shielding also reduces structural, mass and power requirements. For phase II a low cost method for testing shielding on Earth had been devised using cosmic GeV muons as a surrogate for the GCR encountered in space.

During the phase I study MSNW developed 3-D relativistic particle code to evaluate magnetic shielding of GCR and evaluated a wide range of magnetic topologies and shielding approaches from nested tori to large, plasma- based magnetospheric configurations. It was found that by far the best shielding performance was obtained for the MDT configuration. The plans for phase II include an upgrade of the MSNW particle code to include material activation and a full range of GCR ions and energies. The improved particle code will be employed to characterize and optimize a subscale MDT for shielding GCR-generated muons arriving at the Earth's surface.