Article Image
IPFS News Link • Space Travel and Exploration

DARPA and US Space Force Aim to Mass Produce LEO Spy Satellites

• Next Big Future - Brian Wang

DARPA Blackjack aims to demonstrate spy satellite sensors that are low in size, weight, and power, and that can be mass produced to fit on many different buses from many different providers, for less than $2 million per payload.

They want Low Earth Orbit spy satellite network performance that is on par with current spy satellites systems in geosynchronous orbit with the spacecraft combined bus, payload(s), and launch costs under $6 million per orbital node while the payloads meet size, weight, and power constraints of the commercial bus.

DARPA is evaluating buses from Airbus, Blue Canyon Technologies, and Telesat, all of which have progressed through preliminary design review. The final selection of buses will happen in 2020. The program recently completed preliminary design review for Pit Boss, selecting SEAKR as the primary performer for the on-orbit autonomy system. The agency also awarded a contract to Lockheed Martin as the satellite integrator.

Several sensor payloads are under consideration for the Blackjack demonstration sub-constellation, including overhead persistent infrared (OPIR) from Collins Aerospace and Raytheon; radio frequency systems from Northrop Grumman Mission Systems, Trident, and Systems & Technology Research; position, navigation, and timing from Northrop Grumman; optical inter-satellite links from SA Photonics; and electro-optical/infrared from L3Harris. The program also recently completed a Small Business Innovation Research contract with Augustus Aerospace to work on an Army Space and Missile Defense Command-related payload.

U.S. Space Force and Space Development Agency, DARPA's Blackjack program is targeting flights to low-Earth orbit (LEO) later this year and 2021. Using a series of small risk reduction satellites, the program aims to demonstrate advanced technology for satellite constellation autonomy and space mesh networks. Blackjack seeks to develop and validate critical elements of global high-speed autonomous networks in LEO, proving a capability that could provide the Department of Defense with highly connected, resilient, and persistent overhead coverage.