Article Image
IPFS News Link • Technology: Computer Hardware

Breakthrough photonic processor promises quantum computing leap


To make this technology a reality, however, photonic circuitry must first become at least as efficient at multi-tasking as the microprocessors they are designed to replace. Towards this end, researchers from the University of Bristol and Nippon Telegraph and Telephone (NTT) claim to have developed a fully-reprogrammable quantum optical chip able to encode and manipulate photons in an infinite number of ways.

Created from glass and silicon using standard semiconductor fabrication techniques, the new device ups the ante on previous photonic chips by incorporating six wave-guides for universal linear optic transformations and 15 integrated interferometers (devices that superimpose one photon beam over another to look for anomalies in intensity or phase), each of which is individually programmable. As a result, a range of different quantum processor operations can be performed at one time.

Even better, the stable and quickly reprogrammable nature of the chip's architecture – changeable by means of software code – means that a vast range of existing and yet-to-be-devised quantum experiments may be conducted rapidly in succession, or simultaneously, to help realize what may well be myriad future protocols.