Article Image
News Link • Science, Medicine and Technology

MIT atomic computer modeling to find stronger concrete

• https://www.nextbigfuture.com

MIT researchers have discovered the beginnings of a new approach to producing concrete that is inspired by the hierarchical arrangements of simple building blocks in natural materials. The findings could lead to new ways to make concrete stronger and to use more sustainable, local materials as additives, to offset concrete's greenhouse gas emissions.

In the new study, Oral Buyukozturk, a professor of civil and environmental engineering, and his colleagues analyzed a key property in concrete, at the level of individual atoms, that contributes to its overall strength and durability. The group developed a computer model to simulate the behavior of individual atoms which arrange to form molecular building blocks within a hardening material.

These simulations revealed that an interface within the molecular structure exhibited a "frictional" resistance under sliding deformation. The team then developed a cohesive-frictional force field, or model, that incorporates these atom-to-atom interactions within larger-scale particles, each containing thousands of atoms. The researchers say that accurately describing the forces within these assemblies is critical to understanding the way strength develops in concrete materials.

The team is now examining ways in which the cohesive and frictional forces of groups of atoms, or colloids in cement, are improved by mixing in certain additives such as volcanic ash, refinery slag, and other materials. The team's computer model may help designers choose local additives based on the molecular interactions of the resulting mixtures. Through careful design at the microscopic level, he says, designers and engineers can ultimately build stronger, more environmentally sustainable structures.

Join us on our Social Networks:

 

Share this page with your friends on your favorite social network:


Free Talk Live