Article Image

IPFS News Link • Science, Medicine and Technology

Tissue created with microblood vessel network and integrated the tissue into mice-

• nextbigfuture.com Author: brian wang

New research, led by nanoengineering professor Shaochen Chen, addresses one of the biggest challenges in tissue engineering: creating lifelike tissues and organs with functioning vasculature —networks of blood vessels that can transport blood, nutrients, waste and other biological materials — and do so safely when implanted inside the body.

Researchers from other labs have used different 3D printing technologies to create artificial blood vessels. But existing technologies are slow, costly and mainly produce simple structures, such as a single blood vessel — a tube, basically. These blood vessels also are not capable of integrating with the body's own vascular system.

"Almost all tissues and organs need blood vessels to survive and work properly. This is a big bottleneck in making organ transplants, which are in high demand but in short supply," said Chen, who leads the Nanobiomaterials, Bioprinting, and Tissue Engineering Lab at UC San Diego. "3D bioprinting organs can help bridge this gap, and our lab has taken a big step toward that goal."
 


AzureStandard