Article Image

IPFS News Link • Techno Gadgets

Making Stretchable Electronics

• David Talbot and Kyanna Sutton
 MC10, a startup in Cambridge, Massachusetts, is getting ready to commercialize high-­performance electronics that can stretch. The technology could lead to such products as skin patches that monitor whether the wearer is sufficiently hydrated, or inflatable balloon catheters equipped with sensors that measure electrical misfiring caused by cardiac arrhythmias.

Microelectronics have long "depended on a rigid, brittle wafer," says David Icke, MC10's CEO. MC10 uses a few tricks to change that. To make both the hydration-­sensing patch and the catheter, gold electrodes and wires just a few hundred nanometers thick are deposited on silicon wafers by conventional means, then peeled off and applied to stretchable polymers. The serpentine wires elongate when the polymers stretch, either when the balloon inflates in the heart or as the patch moves around on the skin. The electrodes measure electrical impedance to detect the electrical signals in cardiac tissue or moisture levels in the skin.

The company is building on lab prototypes made by University of Illinois materials scientist John Rogers, a company cofounder. Rogers's technologies have advantages over other approaches to flexible electronics. For example, organic polymer electronics can only bend, not stretch, and they are slower than devices made of inorganic semiconductor materials or precious metals such as gold, so they can't provide precise real-time biological readings.


www.universityofreason.com/a/29887/KWADzukm