Article Image
IPFS News Link • Science, Medicine and Technology

Claims of Practical Room Temperature Superconductor

• arclein

The phenomenon of high temperature superconductivity, approaching room temperature, has been realized in a number of hydrogen-dominant alloy systems under high pressure conditions1-12. A significant discovery in reaching room temperature superconductivity is the photo-induced reaction of sulfur, hydrogen, and carbon that initially forms of van der Waals solids at sub-megabar pressures. Carbonaceous sulfur hydride has been demonstrated to be tunable with respect to carbon content, leading to different superconducting final states with different structural symmetries. A modulated AC susceptibility technique adapted for a diamond anvil cell confirms a Tc of 260 kelvin at 133 GPa in carbonaceous sulfur hydride. Furthermore, direct synchrotron infrared reflectivity measurements on the same sample under the same conditions reveal a superconducting gap of ~85 meV at 100 K in close agreement to the expected value from Bardeen-Cooper-Schrieffer (BCS) theory13-18. Additionally, x-ray diffraction