Article Image
News Link • Japan - Earthquake Tsunami Radiation

Has Fukushima's Reactor No. 1 Gone Critical?

• ecocentric.blogs.time.com/
 
A Research Scientist at the Monterey Institute of International Studies saw a report by Kyodo news agency that caught his eye. It reported that Tokyo Electric Power Company (TEPCO) had observed a neutron beam about 1.5 km away from the plant. Bursts of neutrons in large quantities can only come from fission so Dalnoki-Veress, a physicist, was faced with an alarming possibility: had portions of one of Fukushima's reactors gone critical? To nuclear workers, there are few events more fearful than a criticality accident. In such a scenario, the fissile material in a reactor core--be it enriched uranium or plutonium--undergoes a spontaneous chain reaction, releasing a flash of aurora-blue light and a surge of neutron radiation; the gamma rays, neutrons and radioactive fission products emitted during criticality are highly dangerous to humans. Criticality occurs so rapidly--within a few fractions of a second--and so unpredictably that it can suddenly kill workers without warning. There have been 60 criticality incidents worldwide since 1945. The most recent occurred in Japan in 1999, at an experimental reactor in Tokai, when a beam of neutrons killed two workers, hospitalized dozens of emergency workers and nearby residents, and forced hundreds of thousands to remain indoors for 24 hours. Dalnoki-Veress did not see any further reference to a neutron release. But two days after the Kyodo agency report, on March 25, TEPCO made public measurements of different isotopes contributing to the extremely high measured radioactivity in the seawater used to cool reactor No 1. Again, a piece of the data jumped out at Dalnoki-Veress: the high prevalence of the chlorine-38 (CL-38) isotope. CL-38 has a half-life of 37 minutes, so would decay so rapidly as to be of little long-term safety concern. But it's very presence troubled Dalnoki-Veress. Chlorine-37 (CL-37) is part of natural chlorine that is present in seawater in the form of ordinary table salt. In order to form CL-38, however, neutrons must interact with CL-37. Dalnoki-Verress did some calculations and came to the conclusion that the only possible way this neutron interaction could have occurred was the presence of transient criticalities in pockets of melted fuel in the reactor core.

Join us on our Social Networks:

 

Share this page with your friends on your favorite social network:


GoldMoney