Article Image

IPFS News Link • Science, Medicine and Technology

The shocking science behind petting cats – or how static electricity works

• https://newatlas.com, By Bronwyn Thompson

And while cats are not the main culprits of creating this static electricity, their fur is an ideal conductor.

Northwestern University researchers have been working on the elusive mystery of how static electricity works for more than half a decade, with a preliminary breakthrough coming in 2019. In the previous study, they discovered that nano-sized deformations in the surface area of objects, and the act of an object sliding across this surface, played a key role in creating electrical charges.

Now they've found that due to these deformations, different electrical charges build up in the process of sliding one object across another – for example, a hand when petting a cat. This current is then enough to deliver that static electricity-driven 'zap' when the charged object meets another surface, particularly in low-humidity conditions.

"For the first time, we are able to explain a mystery that nobody could before: why rubbing matters," said lead researcher Laurence Marks, professor of materials science and engineering at Northwestern. "People have tried, but they could not explain experimental results without making assumptions that were not justified or justifiable. We now can, and the answer is surprisingly simple. Just having different deformations – and therefore different charges – at the front and back of something sliding leads to current."

The phenomenon was first – as far as records show – observed by Greek philosopher Thales of Miletus, who wrote of the static electricity created by rubbing amber with fur, which then attracted dust, in 600 BCE.

"Since then, it has become clear that rubbing induces static charging in all insulators – not just fur," Marks said. "However, this is more or less where the scientific consensus ended."

From their 2019 research, the Northwestern team created a model that measured electrical currents caused by rubbing, which they call "elastic shear." Essentially, the charge relates to force and friction – as Newton's third law of physics outlines – and how charges shift in the process. When materials with these nano-scale deformations rub against each other, they create that front-back static charge that leads to a current build-up.


Zano